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Abstract—The goal of robotic therapy is to provoke motor plas-
ticity via the application of robotic training strategies. Although
robotic haptic guidance is the commonly used motor-training
strategy to reduce performance errors while training, research
on motor learning has emphasized that errors are a fundamental
neural signal that drives motor adaptation. Thus, researchers
have proposed robotic therapy algorithms that amplify movement
errors rather than decrease them. Studying the particular brain
regions involved in learning under different training strategies
might help tailoring motor training conditions to the anatomical
location of a focal brain insult. In this paper, we evaluate the
brain regions involved in locomotion adaptation when training
with three different conditions: without robotic guidance, with
a random-varying force disturbance, and with repulsive forces
proportional to errors. We performed an fMRI pilot study with
four healthy subjects who stepped in an fMRI compatible walking
robotic device. Subjects were instructed to actively synchronize
their left leg with respect to their right leg (passively guided
by the robot) while their left leg was affected by any of the
three conditions. We observed activation in areas known to
be involved in error processing. Although we found that all
conditions required the similar cortical network to fulfill the
task, we observed a tendency towards more activity in the
motor/sensory network as more “challenged” the subjects were.

January 20, 2011

I. INTRODUCTION

There is increasing interest in using robotic devices to pro-
vide haptic guidance in a desired pattern of kinematics during
movement practice (e.g. [1], [2], [3], [4]). Haptic guidance
is a motor-training strategy in which a human or machine
trainer physically interacts with the participant’s limbs during
movement training. The idea behind haptic guidance is a haptic
device that demonstrates the correct movement trajectory in
order for the Central Neural System (CNS) to replicate it.
It is believed that haptic guidance could provide the CNS
with additional proprioceptive and somatosensory cues to help
enhance movement planning, as well as enable to attempt more
advanced strategies of movement.
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Although haptic guidance is often used in motor training
and rehabilitation, there is currently little evidence that robotic
guidance is more beneficial for human motor learning than
unassisted practice. In fact, a long-standing hypothesis in
motor learning research is the Guidance Hypothesis, which
states that physically guiding a movement impairs motor
learning [5], [6]. A number of studies have confirmed this
hypothesis, finding that physically guiding movements does
not aid motor learning and may in fact hamper it [2], [4], [7],
[3].

Assisting-type robotic therapy algorithms have the effect of
reducing movement errors. However, research on motor learn-
ing has emphasized that errors are a fundamental signal that
drives motor adaptation [8], [9], [10], [11]. Thus, researchers
have proposed robotic therapy algorithms that amplify move-
ment errors rather than decrease them. In [12] amplifying
errors during reaching by persons with chronic stroke with
a robotic force field resulted in straighter movements when
the force field was removed. Similarly, in [11], increasing
limb phasing error in post-stroke participants’ gait through a
split-belt treadmill induced a long term increase in walking
symmetry. In [13], training a reaching task with amplified
errors was more beneficial for least impaired stroke patients,
whereas more impaired stroke patients benefited more from
haptic guidance. This result is consistent with [14], where
training with amplified errors produced greater learning to
play a pinball-like game than training with haptic guidance
in higher-skilled participants, while for the less-skilled par-
ticipants, training with haptic guidance was more beneficial.
An extended approach to error amplification (“haptic distur-
bance”) was proposed in a recent motor learning study [15].
The “haptic disturbance” was applied as randomly-varying
feedforward forces to disturb the participants’ movements
while training a tracking task. Training with noise force distur-
bance resulted in better tracking skills than unassisted training,
and than training with a more conventional error-amplification
strategy (repulsive forces proportional to tracking errors).

The goal of robotic therapy is the development of robotic
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devices to perform rehabilitation exercises which provoke mo-
tor plasticity. However, currently there is not a solid scientific
understanding of how this goal can be best achieved. Never-
theless, it is still an open question how different rehabilitation
strategies contribute to restorative processes of the CNS [16].
Evaluation of brain regions involved in learning can provide
valuable information on observed behavioral outcomes related
to learning processes. The results from studying the particu-
lar brain regions involved in learning might have important
therapeutic implications in terms of tailoring motor training
conditions to the anatomical location of a focal brain insult.
To achieve this goal, we target to evaluate the brain regions
involved in learning when training with different forms of
robotic guidance and error amplification, while performing
functional Magnetic Resonance Imaging (fMRI).

In this paper we focus on locomotion adaptation, using a
novel fMRI compatible walking robotic device. There is no
comparable published literature with respect to cortical un-
derpinnings of a complete gait-like movement. Therefore, our
hypothesis derive from studies that investigated isolated joint
movements like ankle or knee movements [17] or imagination
of walking [18], [19], [20]. We hypothesized to find activity
in somatosensory/motor related areas (S1/M1) and supple-
mentary and pre-supplementary motor areas (SMA/pSMA).
Hypothetically, the mirror neuron system might be implicated
during training when the task is too easy. Patterns of activity of
mirror neurons have been noted principally in pars opercularis
of the inferior frontal gyrus [21], [22], in premotor cortex
[21], [23], and inferior parietal lobule [24]. On the other
hand, when the guidance makes the task more challenging,
more activity is expected to be observed within all somatosen-
sory/motor related areas, as well as in brain areas involved
in error processing, such as the anterior cingulate cortex [25],
posterior medial frontal cortex [26], and cerebellum [27], [28].
Because some of the paradigms presented here requested a
high degree of motor related inhibition effort (subject were
requested to remain their right leg passive), activation within
dorsolateral prefrontal, medial prefrontal and possibly anterior
insular subdivisions were additionally hypothesized. Further-
more, according to animal studies, activation is the brainstem
is also expected. However, the interpretation of those remained
difficult because of biasing influences due to movement.

II. METHODS

In order to perform the fMRI investigations during robotic
training, we developed a robotic system able to perform
defined gait movements, measure relevant parameters, and do
not disturb the imaging process (Fig. 1).

A. MARCOS

MARCOS is a one degree of freedom robot, developed
in our lab, that can provide active (machine-driven) and
passive (subject-driven), gait-like movements during fMRI,
without affecting image quality. MARCOS is actuated by
two pneumatic cylinders per leg (Fig. 1). Pneumatic actuation
allows for fine position and accurate force control [29], while

requiring neither ferromagnetic materials nor fluids with high
susceptibility which may interfere with the fMRI environment.
Furthermore, pneumatic actuation allows for a more compliant
robotic device, compared to motor driven robots. The cylinders
connected to the knees are controlled by proportional flow-
valves. The cylinders connected to the feet are controlled by
pressure-control valves and a proportional valve. The reaction
forces between the subject and robot are measured through
force sensors located in the knee orthosis attachments, and
the foot plates (Fig.1). A total of four resistant strain gauges
on aluminum substrate serve as force sensors. The position
of each cylinder piston is measured redundantly by optical
encoders (MS20, RSF Elektronik AG) with a ceramic scale
and a foil potentiometer.

Movements performed with MARCOS are comparable to
periodic, on the spot stepping. For each leg, the knee and foot
are attached to a modified pneumatic cylinder (DNC 40-320-P-
K10-S11 (Knee), DNC 32-350-P-K10-S11 (Foot), Festo). All
ferromagnetic parts in the pistons were replaced by aluminum
and brass house-made parts. The gait pattern is controlled
mainly by the knee cylinder, while the foot cylinder is able to
generate a foot load that simulates ground reaction forces of up
to 400 N on the foot sole (Fig. 1). The gait-like movement was
adapted from natural walking characterized by a well-defined
[30] series of flexion and extension movements at both hip
(range 0◦ to 40◦) and knee (0◦ to 50◦). Each foot moves along
a linear guide (Fig. 1). The position and the slope of this linear
guide can be separately adjusted to enable different angular
displacements at the hip and knee [31]. The foot orientation
is fixed. The angular displacements of the ankle range from
45◦ to 90◦.

B. Control modes

MARCOS can work in four different modes: (1) passive,
(2) active, (3) force disturbance, and (4) error amplification.
In passive mode, MARCOS guides the gait pattern, while
the subject remains passive. In active mode, the subject is
in charge of the movement generation, and the robot follows
the subject movements. In force disturbance mode, a random
force generated by the knee cylinder is superimposed to the
active mode, in order to disturb the movement generated by the
subject. In error amplification mode, MARCOS works mainly
in active mode, however it amplifies the tracking error created
by the subject, adding a force on the knee proportional to the
tracking error.

1) Passive mode: The control strategy in the passive mode
combines a feedback position controller in parallel with an
iterative learning feedforward controller (ILC). The position
controller enforces the desired knee trajectory through the
length of the cylinder attached to the knee, with the propor-
tional flow valves. The actuation variable from the position
controller is proportional to the difference between the desired
knee position and the measured actual position. One of the
after effects of using proportional valves is their well known
non-linear behavior. Such effect was compensated using a
linearized model of the proportional valves response.

328



Orthosis

Force Sensor

Knee 

Force Sensor

Foot

Cylinder

Knee 

Cylinder

Foot

Fig. 1. Left: The fMRI compatible robotic stepping actuator MARCOS in the 1.5T MR scanner. MARCOS can provide active (machine-driven) or passive
(subject-driven), gait-like movements. Right: The MARCOS system sketch (only 1 leg depicted for clarity). MARCOS is actuated with two pneumatic cylinders
per leg. The reaction forces between the subject and the robot are measured through force sensors located in the knee orthosis attachment and the foot plate.
The position of each cylinder piston is measured redundantly by optical encoders.

The ILC benefits from the gait cyclic movement to learn
how to periodically improve the overall control performance.
It calculates a feedforward control signal for the current cycle
out of the error trajectory of the previous cycle, in a similar
fashion as in [32]:

uk(t) = g · ek−1(t+∆t) + f · uk−1(t) (1)

Thus, the control signal from the ILC at cycle k at each
discrete time t, is proportional to the tracking error created in
the previous cycle ek−1, and the control signal in the previous
cycle uk−1(t), at the same discrete time. The proportional gain
g is the learning gain, and f is the robot forgetting factor.
We introduced a time shift ∆t in the tracking error ek−1 to
compensate for the delay in the system, due mainly to the long
air tubing.

2) Active mode: In active mode, the subject is in charge
of the movement generation, while the robot follows the
subject movements. One of the positive features of pneumatic
actuation is their high compliance: cylinders can be switched
to a force-free state by connecting each chamber to the
atmosphere. However, the effect of friction on the cylinders is
large and the subject is required to apply relatively large forces
to overcome the friction force. Compensation of undesired
robot-dynamics is critical in order to allow the participants
to intend the task by themselves, minimizing the interaction
forces between subject and robot.

The control strategy for the active mode is a zero force
controller (i.e. the force at the knee was controlled to zero)
with control gain P1. The user should not feel the weight of
the orthoses W and the friction force of the cylinder. The non-
linealities from the different chamber sizes in the cylinder are
taken into account adding the extra term in the equation P2 ·x,
where x is the position of the knee piston (similar to [33]).
The weight W of the orthosis plus the force sensor in the knee
cylinder (total of 8N) are taken into account as an offset in the
measured force, and thus subtracted from the measured force

Fmeas.

uknee = −(P1 + P2 · x)(Fmeas −W ) (2)

3) Noise force disturbance mode: In order to test the effect
of a more demanding walking task on the brain activation, we
designed a new controller able to apply random perturbation
forces on the knee. The knee cylinder applied the disturbance
as random force pulses every 0.5 seconds during 0.1 seconds.
The force magnitude was randomly generated by a Band-
Limited White Noise block in Simulink, and ranged between
± 100 N. The noise disturbance worked on top of a zero-force
controlled as described in the active mode subsection, thus
adding the force disturbance control variable to the control
variable from the zero-force controller.

4) Error amplification mode: In order to test the effect of
error amplification on brain activation, we designed a new
controller able to amplify the errors generated when trying
to follow a requested knee movement. The actuation variable
from the error amplification controller is proportional to the
difference between the desired knee position and the measured
actual position, similarly to the position controller in the
passive mode. However, the proportional gain in this mode is
negative (Kamp=-2 N/m), thus the force generated by the knee
cylinder is smaller as smaller is the error, and increases with
the tracking error. We saturated the amount of force in order
to guarantee the subject’s safety, and limit the task difficulty.
The error amplification controller works on top of a zero-force
controlled, thus adding the error amplification control variable
to the control variable from the zero-force controller.

C. Protocol

A pilot study with four healthy subjects was performed
in the MR-Center of University of Zurich and ETH Zurich,
on a Philips Achieva 1.5T MR system equipped with
an 8 channel SENSETM head coil. Subjects physical
information, and the color code assigned during data
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B: Example of Active Knee Position
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F: Example Active Knee Position with Error Amplification
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D: Example of Active Knee Position with Noise Disturbance
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E: Active Knee Position with Error Amplification
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A: Active Knee Position
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C: Active Knee Position with Noise Disturbance
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Fig. 2. Desired and actual knee movements under 3 different non-assisting strategies. A: Mean knee position and 1st STD in active mode (dashed line), and
desired knee position (solid line). B: Example of knee position in active mode (dashed line), and desired knee position (solid line). C: Mean knee position
and 1st STD in noise force disturbance mode (dashed line), and desired knee position (solid line). D: Example of knee position in noise force disturbance
mode (dashed line), and desired knee position (solid line). E: Mean knee position and 1st STD in error amplification mode (dashed line), and desired knee
position (solid line). F: Example of knee position in error amplification mode mode (dashed line), and desired knee position (solid line).

analysis, is as follows (Color/Height/Weight/Gender/Age):
Red/176cm/66kg/female/30, Blue/177cm/72kg/male/38,
Green/188cm/82kg/male/26, Gray/176cm/70kg/male/29. The
3rd subject (”green”) was totally naive to the robot, while the
other 3 subjects had already some experience with the robotic
device. Informed consent was obtained from each subject
before the evaluation session. Subjects were positioned with
their legs fixed to the orthosis of MARCOS, and were
instructed to try to remain their right leg passive, while it
was physically moved by the robot, following a sinusoidal
movement of amplitude 0.09m and frequency 0.5Hz (Fig. 2).
They were instructed to move actively their left leg to achieve
an alternating movement (gait like), trying to synchronize the
legs with similar amplitude and frequency.

Three different paradigms were tested: 1) the right leg was
passively moved, while the subject tried to synchronize the
left leg in active mode, 2) same as 1), but the left leg was in
force disturbance mode, 3) same as 1), but the left leg was in
error amplification mode. Each condition consisted of 20 trials.
Each trial consisted of 9 seconds moving the legs as instructed,

followed by a rest-phase (5s). Subjects were instructed to have
their eyes closed and relax. Respective commands were given
via an MR compatible head-set.

The functional acquisitions used a T2* weighted, single-
shot, field echo, echo-planar-imaging (EPI) sequence of the
whole brain (TR = 3 s, TE = 50 ms, flip angle = 82◦, FOV
=220 mm x 220 mm, acquisition matrix = 128 x 128, in-
plane resolution = 1.7mm x 1.7 mm, slice thickness = 3.8 mm,
SENSE factor 1.6, resulting in 35 slices).

Image processing and analysis were performed using
SPM8 (Welcome Department of Cognitive Neurology, Lon-
don, http://fil.ion.ucl.ac.uk/spm). Functional images were nor-
malized into standard stereotactic space using the Montreal
Neurological Institute template (MNI). Spatial smoothing was
performed by applying a Gaussian filter of 8mm FWHM. A
high-pass filter was applied to remove slow temporal drifts
with a period longer than 128 s. A first level statistical analysis
(t-test) was conducted for all four subjects, by modeling each
single condition in a general linear model (GLM) using the
canonical hemodynamic response function. This data analysis
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Fig. 3. Brain responses of four subjects (red, blue, green, gray) according to movement 1 (upper row), 2 (middle row) and 3 (under row) projected onto
the ch2better template implement in MRICron. Depicted are meaningful sagital (s), coronar (c), transversal (t) and a cerebellar (ce) sections to give a basic
overview of the activity pattern. A stringent statistical threshold with family-wise correction p < 0.05 and 10 voxel extent has been applied.

was performed on a subject-by-subject basis to identify the
activated neuronal network involved in each movement task,
compared to the rest periods. A stringent statistical threshold
with family-wise correction p < 0.05 and 10 voxel extent has
been applied.

III. FIRST RESULTS

The effect of the disturbance force mode on the knee
trajectory in one subject is showed (Fig. 2C & D) as an
example. In solid line is showed the desired knee trajectory
the participant was requested to follow with one knee (a
sinusoidal of amplitude 0.09 m and frequency 0.5 Hz), and
the performed movement in dashed line. The noise force
disturbance had the effect of a short and fast change in
the movement’s smoothness. Note that such a short pulse
increased the standard deviation of the tracking error (compare
Fig. 2C with active movement in Fig. 2A), but was not
expected to increase significantly the overall tracking error,
due to the short time it was applied.

The effect of the error amplification mode on the knee is

depicted (Fig. 2E & F). The solid line is the desired knee
movement the participant was requested to follow (same as
above), and the dashed line is the performed movement. The
error amplification increased the tracking error, that lasted for
relative long periods of time. Note that increasing the tracking
errors made the task demanding when errors were large, but
did not have any effect when the error was small. With this new
mode, both, the overall absolute tracking error, and the error
standard deviation, increased (compare Fig. 2E with active
movement in Fig. 2A).

The pilot fMRI measurements showed promising results.
One of the crucial aspects of the pilot study are the head
movement artifacts. In all the demonstrated tasks, we encoun-
tered some of them, but basically, they remained within an
acceptable range (< 2.5 mm).

All four subjects had significant cerebral responses in a
widely distributed network; however, they differ in some
respect (Fig. 3). The activity covers several aspects of sensori-
motor areas like primary motor/sensory cortices, supplemental
motor cortex, subdivisions of the cingulate cortex, frontal and
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latero-frontal areas, subcortical structures as thalamus, basal-
ganglia as well as parts of the insular cortex. The highest
coincidence in terms of activity can be observed in cerebellar
subareas. Subject with brain activation showed in red (Fig. 3)
had most activity, while subject with activation showed in gray
(Fig. 3) had fewest activation across the conditions.

IV. CONCLUSION

We designed and implemented four different control strate-
gies for a novel fMRI compatible robotic device that can
robotically assist or resist during stepping in the fMRI: (1)
passive mode, (2) active mode, (3) force disturbance mode,
and (4) error amplification mode. In passive mode, MARCOS
guided the gait pattern, while the subject remained passive. In
active mode, the subject was in charge of the movement gen-
eration, while the robot was controlled to zero-force. In force
disturbance mode, a random force disturbed the subject own
generated movement. During error amplification, MARCOS
increased the task difficulty amplifying the tracking error by
generation of a force on the knee proportional to the tracking
error.

MARCOS provided the possibility to measure the brain
activation during gait-like movements of the lower limbs with
fMRI. The most important joints (ankle, knee, and hip) were
included in this movement. With the indispensable reluctance
to conclude based on single subjects analysis, all three condi-
tions required the similar cortical network to fulfill the task.
Furthermore, it seems that the “special characteristics” of the
applied movements are rather demanding for the brain, as a
wide distributed network is involved to accomplish the differ-
ent aspects of the conditions. Alongside the basically expected
response patterns of the primary sensorimotor network, we
observed strong frontal cortex, insula and cingulate cortex
activation in some of the subjects, and strong activation in
cerebellar subareas in all subjects. These specifics are pointing
to a possibly high cognitive load induced by the demanding
movements. According to the observed brain responses, our
very basic hypotheses could be verified: we observed strong
activation in brain areas known to be involved in error pro-
cessing.

We did not find strong differences between the 3 strategies,
due to the reduced number of subjects in the pilot study.
However, we observed a tendency towards more activity in
the motor/sensory network as more “active” and “challenged”
the subjects were (i.e: red and green subjects in Fig. 3).
Thus, error amplification strategies appear to have a great
potential to improve robotic therapy outcomes. By increasing
the task difficulty, the training could constantly solicit activity
in the error-processing brain areas and could pressure the
motor system to continuously update its motor commands and
help promote the creation of new ones that benefit functional
recovery [34].

The possible differences in brain activation between haptic
guidance, active movement, and the two error amplification
strategies presented in this paper will be further analyzed in
a randomized intra-subject experimental study with a larger

group of healthy subjects. We will run a learning paradigm
experiment in the fMRI in order to examine if the brain
activation pattern changes as learning progresses, if activation
is dependent on the individual skill level and the strategy
trained, and which brain areas are activated if aftereffects
are observed. The different paradigms will be tested always
starting with haptic guidance. Then, the following three con-
ditions here presented, will be performed in randomly order.
Each condition will consist of 30 trials. Each trial will consist
of 9 seconds moving the legs as instructed, followed by
a rest-phase (5s). Between conditions, the subjects will be
requested to perform the task in active mode during 100
seconds to test for aftereffects. In the long run, we further
aim at investigating patients with neural injuries with different
levels of impairment in order to find the strategies that better
optimize neuroplasticity based on the impairment level and
location of the neural insult.
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